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ABSTRACT

A general finite element procedure for obtaining strain-
energy release rates for crack growth in isotropic materials is
presented. The procedure is applicable to two-dimensional finite
element analyses and uses the virtual crack-closure method. The
procedure was applied to non-singular 4-noded (linear), 8-noded
(parabolic), and 12-noded (cubic) elements and to quarter-point
and cubic singularity elements. Simple formulas for strain-
energy release rates were obtained with this procedure for both
non-singular and singularity elements. The formulas were
evaluated by applying them to two mode I and two mixed mode
problems. Comparisons with results from the literature for these
problems showed that the formulas give accurate strain-energy

release rates.

INTRODUCTION

Two-dimensionél finite element analyses are widely used to
obtain stress-intensity factors and strain-energy release rates
for cracked isotropic and orthotropic domains. Several methods
are available to extract the stress-intensity factor K and
hence the strain-energy release rate G from finite element
results [1-5]. For isotropic materials, stress-intensity facfors
have been used to predict fatigue crack growth and fracture.
However, for composites, idealized as orthotropic or anisotropic

materials, with cracks or delaminations, the strain-energy



release rate G has been found to be more convenient [6,7] for
these predictions.

The strain-energy release rate for a particular crack length
can be obtained with two finite element analyses using the same
model but with two crack lengths differing by a small amount.
This procedure is not preferred since the boundary value problem
needs to be solved twice. A variety of methods [8-10] which
utilize only a single finite element analysis are available to
6btain strain-energy release rates. One such method, based on
Irwin's virtual crack-closure method, uses the stresses ahead of
the crack tip and the displacements behind the crack tip.
Rybicki and Kanninen [8] used this approach to obtain a simple
formula for the strain-energy release rate for a cracked,
isotropic domain modeled with four-noded quadrilateral, non-
singular elements.

In the recent years, several crack-tip singularity elements
have been developed [2,3,4,11,12]. These elements produce the
required singularity at the crack tip and give accurate stress
distributions with fewer degrees of freedom than non-singular
elements. For the special singularity elements with the near-
field solution built in explicitly [12], the K and G values
are obtained as a part of the solution. For the more popular
singularity elements, like the quarter-point (QP) and cubic
singularity elements, K and G are usually obtained using the
crack opening displacement (COD) method [2-5]. This procedure is

attractive for isotropic materials but has not been applied for




cracks along interfaces in bimaterial plates and is difficult to
apply for cracks in orthotropic or anisotropic plates.

The formula given by Rybicki and Kanninen [8] is attractive
because the G values can be obtained easily from a single finite
element analysis. Similar formulas would be very useful for
higher order and singularity elements. The purpose of this paper
is to present a uniform procedure for calculating strain-energy
release rates that will apply to non-singular and singular
elements of any order. The development of this procedure is
based on Irwin’s virtual crack-closure method. The procedure
will provide a set of G formulas that depend on the crack opening
dispiacements and the nodal forces at and ahead of the crack tip.
The procedure outlined here will also serve as a basis for the
development of similar formulas in the analysis of cracked
orthotropic or anisotropic composite materials. These materials,
however, are not considered in this paper.

First, Irwin's virtual crack-closure method is reviewed.
Next, a general procedure for calculating strain-energy release

rates that applies to linear and higher order elements is

presented. The procedure is then extended to quarter-point and
cubic singularity elements. Formulas for mixed-mode
configurations areuélso obtained. Next, simpler versions of the
formulas for the singularity elements are presented. The

modifications required when the crack faces are loaded with a
uniform pressure distribution are also presented. The G formulas

are evaluated by comparing the calculated strain-energy release



rates with reference solutions from the literature for two mode I

and two mixed-mode problems.
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SYMBOLS
crack length
constants in assumed oy distribution

half-width of a center cracked tension
specimen or width of a singe edge notch
specimen

Young's modulus for a homogenous
isotropic plate

Young's moduli in the bimaterial
isotropic plate

nodal forces at the ifh node in the x-
and y-directions, respectively

total, mode I, and mode 11 strain-energy
release rates

half-height of specimen
stress-intensity factor

transformation matrix connecting forces
F or F and constants A,
X, Yi i

distance behind the crack tip on the y=0
line

uniform remote stress or uniform crack-
face pressure loading

displacements in the x- and y-
directions,respectively

relative displacements u and v of
node m with respect to the crack tip

node i: u = u_ - u,; V= Vv - Vv,
m m i m m i




[-1)

v(x) displacement interpolation function of
finite element

vep(r) relative crack opening displacement at a
distance r behind the crack tip

X, y . Cartesian coordinates
9x: Oy, Oxy Cartesian stresses
‘9, 91,'92 Poisson’'s ratios for isotropic,

homogeneous and bimaterial plates
A crack growth increment, equal to the

length of the element nearest to the
crack tip in the x-direction

VIRTUAL CRACK-CLOSURE METHOD
Figure 1(a) shows a crack tip in an infinite isotropic plate
subjected to remote mode I type loading. The normal stress

distribution ahead of the crack tip and on the y = 0 line is of

the form
Al ,
Oy--ﬁ+A2+A3X+... (1)
If the crack extends from a to a + A , for infinitismal values of
A , the crack opening displacements behind the new crack tip

will be approximately the same as those behind the original crack
tip. Then the work necessary to extend the crack from a to a
+ A is the same as that necessary to close the crack tip from a

+ A to a. Irwin computed this work as

A
W = % Io v(r) o (a-r) dr (2)

where v(r) is the crack opening displacement at a distance r




behind the crack tip at a + A . He then obtained the strain-

energy release rate as

Lim W Lim

1 A
G = .0 A~ as0 72 J‘o v(r)o (A-r) dr (3)

Rybicki and Kanninen [8] used Eq. (3) in their finite

element analysis. They considered models with 4-noded
quadrilateral elements only. The strain-energy release rate
equations from Ref. [8] are
G, = 2— (F. (v, - v,,)) (4)
I 2A Yi k k'
G.. = 42— (F (u, - u,,))
11 24 i k k'
where Fx and Fy are the nodal forces at node i in the
i i

x- and y-directions, respectively, computed from elements I and
J in Fig. 1(b). The terms up and vy are the displacements at
node k in the x- and y-directions, respectively. The formulas
in Eqs. (4) are very attractive because the G values can be
computed from a single finite element analysis. These equations
were shown to give accurate G values.

Simple formulas, like Eqs. (4), will be very useful for
higher order or singularity elements. This paper develops a
uniform procedure, based on Irwin's virtual crack-closure method,
that will give simple formulas. for the strain-energy release

rates for higher order and singularity elements.




PROCEDURE FOR CALCULATING STRAIN-ENERGY RELEASE RATES

In this section, a general procedure for obtaining the

strain-energy release rates from a single finite element analysis

is presented. First, this procedure is outlined for 4-noded

quadrilateral elements. The procedure is then extended to 8-

noded parabolic and 12-noded cubic elements. This procedure is

also used to obtain G formulas for quarter-point (QP) and cubic

singularity elements.

. In this procedure, the following assumptions are made:

1.

The finite element idealization in the immediate
vicinity of the crack tip is symmetric about the x = 0
line and symmetric about the crack plane (y = 0),.

The normal and shear stresses on the y = 0 line and
ahead of the crack tip are assumed to have the
classical square-root stress distribution as in

Eq. (1). 1In the limit, as the element size in the
analysis domain becomes smaller, the classical square-

root distribution will develop near the crack tip. This

1is true regardless of the type of element used to model

the problem. Therefore, the form of Eq. (1) is assumed

a priori instead of using the stress diétribution given

by the particular finite element model.

The functional form of the crack opening profiles, u(r)

and v(r), on the y = 0 line is determined by the element

shape functions.




The normal stress oy distribution of Eq. (1) can be
determined from the nodal forces at and ahead of the crack tip’
(on the y = 0 line). While nodal forces are available at several
nodes on the y = 0 line, in this procedure only the nodal forces
from elements nearest to and around the crack tip will be used to
determine the oy distribution. Then the normal stress oy and the
crack opening displacements v(r) are used in Irwin's virtual
crack-closure method to obtain the G formulas for various higher

order non-singular and singularity elements.

Non-Singular Elements
4 -Noded Quadrilateral Elements
Consider a finite element idealization with linear
quadrilateral elements symmetric about the crack tip as shown in
Fig. 2. Ahead of the crack tip (at node 1) and along the y = 0

line, the stress gy is assumed to have the form

1
ay -T/? + A2 for x 2 0 (5a)
-0 for x < 0 (5b)
where Aj] and Aj are unknown constants. The nodal forces F_ ,
i
F , F , F shown in Fig. 2(b) can be thought of as
yj Y1 Ym

consistent nodal forces acting at nodes i, j, 1, m due to a
prescribed stress distribution of the form in Eq. (5).

Conversely, using these nodal forces, one could calculate the




constants in the assumed stress distribution of Eq. (5) ahead of
the crack tip along the x-axis.

The stress di;tribution in Eq. (5a) is valid only in the
immediate vicinity of the crack tip since it is obtained from the
near field solution at the crack tip. Also, since there are two

unknown constants in the assumed distribution of Eq. (5a), two

forces are sufficient to determine the constants. The two forces
F and F_ , computed from elements I and J nearest to and
Y3 Yj

around the crack tip, can be used. These elements are shown by

solid lines in Fig 2(b).
The work done by the assumed stress distribution on. the
boundary displacements of elements 1 and J 1is equated to the

work performed by the forces Fy and Fy on the
i A

displacements vj and vy as

; fz oy(x) v(x) dx = - 3 (F, vy + F ] (6)

[ Sy

where +v(x) 1is the displacement interpolation function of the 4-
noded element and A is the element length. Since a tensile oy
stress causes forces in the negative y-direction, a negative sign
appears in Eq. (6). For this linear quadrilateral element, the

vix) on the 1ij side is
v(x) = [1 - v, + () v (7)

Substituting Eq. (7) into Eq. (6) and equating the multipliers of

vi and vy yields




a Ay x 4 A
Fy " - Io [ +A,) (1 - Dax =t 3/E A + (5 )4,
(8)
s Ay x 2 A
ij - - J-o (75 + 8,0 (Frdx == 3/8 AL + (5) A,)
Eq. (8) may be written as
(F} = [Q] (A} (9)
where
{(F) = (F F }T
i 7j
— T
{A) = (AlJA AgA)
and
1 8 3
Substitution of the calculated values of Aj; and Ay from Eq.

(9) in Eq. (5) expresses the stress distribution oy ahead of

the crack tip completely in terms of nodal forces F and F_ .
Y3 Yj
Now consider the displacements behind the crack tip. The

relative crack opening displacement vR at any distance r from
the crack tip can be determined by the nodal displacements of

nodes i, k and k' and the element shape functions as

X Y
VR(r) - (1 - A i A (vk = vk') (10)

Now that the stress distribution ahead of the crack tip and

the relative displacements behind the crack tip are known,

10




Irwin’s approach can be used to calculate the strain-energy

release rates as

' A
. Zig %Z [ oyta - ) vp(r) ar (11a)
0

Lim 1 A [Al AT L (L - v, + F (v, - vy)ldr
8-0 23 |, Ja-xt M2 A7 T A YTk T Tk
Integrating Eq. (11lb) and using Eq. (9) gives (11b)
Lim 1
GI = Av0 " 73 [F v + F (vk - vk,)] (12)

yy i ¥y

Because the relative displacement at the crack tip vjy 1is zero,
Eq. (12) reduces to

Lim 1

A similar procedure can be followed to show that

Lim 1
11 = av0 U7 72 [in (up = w1 (14)

The limits in Eqs. (13) and (14) suggest that the crack tip
element needs to be small, and as smaller elements are used at
the crack tip, the correct limits for Gy and Gy are
approached. Numerical experimentation is required to determine
the necesary mesh refinement and the limits in Eqs. (13) and (14)

can be then dropped in actual computations.

11



Eqs. (13) and (1l4) are identical to those presented by
Rybicki and Kanninen [8] and are widely used in the literature
[13-15]. Equations (13) and (l4) are also applicable if

triangular elements (Fig. 2(c)), obtained by collapsing the

quadrilateral elements, are used at the crack tip. Note that for
this idealization, the forces F and F are the forces at
nodes i and j computed from elements I, J, K and L

surrounding the crack tip.

8-Noded Parabolic Element

To obtain the G expressions for the 8-noded element, the
procedure outlined above is followed. For this element, because
forces are available at three nodes, 1i, i, and k (see Fig.

3(a)), the oy distribution along the y = 0 line is assumed to be

N |
1
Oy TTTX * Ap * Aglx (15)

The parabolic shape functions for this element are

3 2x2 X x2
v(x) = (1 - = + ——5) v + (4 - - h——i) v
A A i A A J
(16)
X x2
+ (- - + 2-—5) v
A A k
As before, the forces at the nodes i, j, and k can be
related to the constants Aj, A, and A3 of the assumed oy

12




distribution (Eq. (15)) as

{F} = [Q] (A) (17)
where
T
F} = (F F F
(F} { ¥, yj yk‘
3/2.T

{A) = (AlfK AyA  A4A )t

and

168 35 8
Q] = - i%é 224 140 96
28 35 36

The strain-energy release rates are obtained by performing the

integrations as in Eq. (lla) and using Eq. (17) as

GII - 722 [in(um ) um') * Fx §u1 . “1')]

Note that the forces at node k do not appear in these equations
because the relative displacement at node 1 1is zero.

These equations are similar to those for the 4-noded
element. Eqs. (18) are also applicable if triangular parabolic
elements (Fig. 3(b)), obtained by collapsing the parabolic
elements, are used at the crack tip. Equations (18) were used in

references 6, 7 and 16 to obtain G values for delaminated

13




composite laminates. Recently, Krishnamurthy et. al [17]}, using
a procedure similar to the one described in this paper, derived G

formulas identical to Eqs. (18) for this element.

12-Noded Cubic Element
For this element, because four forces are available at nodes
i, i, k, and 1 (see Fig. 3(c)), the oy distribution along

the y = 0 line is assumed to be

A1

Uy - Tf'l' A2 + A3,/; + Aax (19)
The cubic shape functions for this element are

2 3

X e - v

v(x) i1 -

X
A

™

i

+

2 3
X 45 b'e 27 X
[9(5) - —E)(A) + GE—)(A) ]Vj
(20)
-3y (%) + 18(’-‘>2- (-2—Z>(’-‘)3]v |
2 A A 2 A k

+

X 9, ,x 2 9, . x 3
+ [(3) - ()3 + ;)3 vy
As before, the forces at the nodes i, j, k, and 1 can be
related to the constants Aj, Ap, A3, A4 in the assumed oy
in Eq. (19) as
(F} = [Q] (A) (21)

where

(F) = (F F F F. )
Y.

_ 3/2 2
{A) (AIJK A,A L A

14




544 105 32 14
720 315 144 63
1
Q1 = - 333 288 315 288 252
128 105 96 91 |

The strain-energy release rates are obtained by performing

the integrations as in Eq. (1la) and using Eq. (21) as

1 .
GI T [Fyi(vp-vp,) + ij(vn-vn,) + Fyk(vm-vm,)]

and (22)
1

G - -

I1 2z [Fy (v

-up,) + Fx.(un-un’) + Fx (u -um,)]
i j k

Note that the forces at node 1 do not appear in these equatiéns
because the relative displacement at node i 1is zero.

The strain-energy release rate formulas for this element are
very similar to those of the linear and parabolic elements. The
formulas given in Eq. (22) are also valid if triangular elements
(Fig. 3(d)), obtained by collapsing one side of the cubic

elements, are used at the crack tip.

Singularity Elements
Quarter-Point Singularity Element
Henshell and Shaw {3] and Barsoum [4] showed that square
root singularities are produced at the crack tip if the midside
nodes of an 8-noded element (Fig. 3(a)) are moved to the quarter-
point positions as shown in Fig. 4(a). The quarter-point nodes

15



on the y = 0 1line in this figure are nodes j and 1.

For this element, the gy distribution ahead of the crack

tip on the y = 0 1line is assumed to be like that given in Eq.

(15). The shape functions of this element involve square root

terms [4] and are

voo =11 -3 B v Xy v Bty

(23)

DX

Using this shape function, the forces at the nodes i, i, and

k can be related to the constants Aj;, Ajp, and A3 of the

assumed oy distribution of Eq. (15) as

(F} = [Q](A)} (24)

where {F} and (A) are defined in Eq. (17),

and

10 0 -1
[Q] = - -%—5 40 20 12

10 10 9

For non-singular elements the inversion of the matrix [Q]

was not necessary to determine (A). However, for the singular

elements this was not the case. The constants Aj, Ag, and A3

are related to the nodal forces through

(a) = Q)" (F) (25)

16




wvhere

Q] " = - % -72 30 -48
60 -30 60
The strain-energy release rates were obtained by performing

the integrations as in Eq. (1lla) and using Eq. (25).

1

‘1=z Uy 11 Ve * ST BASTRE
+ ij(tZI(vm-vm,) + t22(vi-v1,)) (26a)
+ Fyk[t31(vm-vm,) + t32(v1-v1,))]
where
€, =16 - 23T e - - 52 4 XL
€y =t tre £y = 17 - 2E (26b)
€y = 8 - IgE 5ty - - 32 453

A similar equation was obtained for Gy, where Fy 1s replaced
with Fy and v 1is replaced with wu.

In contrast to the regular parabolic elements, the strain-
energy release rate equations for quarter-point (QP) eleﬁenCS
have cross terms involving the corner and quarter-point forces
and the‘relative displacements at the corner and quarter-point
nodes. As before, the formulas given in Eq. (26) are also valid
if triangular quarter-point elements (Fig. 4(b)), obtained by
collapsing one side of the QP elements, are used at the crack

17




tip.

Cubic Singularity Element

Pu et al. [11] showed that a 12-noded cubic element has a
square root singularity if the two side nodes are moved from the
1/3 and 2/3 positions to the 1/9 and 4/9 positions, respectively
(see Fig. 4(c)). This is analogous to moving the midside nodes
to the quarter points for a parabolic element. For this cubic
singularity element, the same procedure as above was applied to
obtain the strain-energy release rate equations.

For this element, the oy distribution ahead of the crack
tip on the y = 0 1line is assumed to be as given in Eq. (19).
The shape functions of this element, as is the case for the

quarter-point element, involve square root terms [1l1] and are

3/2
11 9
3/2
45 x 27 ,x
rOJE T AT @ Iy
27)
3/2 (
9 X X 27 ,x
M SEE IR /SRR LY Sies A6V RS A
Y S
A 2 A 2A 1
With these shape functions, the forces at the nodes i, i, k,
and 1 can be related to the constants Ay, Ag, Ay, and Ay

of the assumed oy distribution in Eq. (19) as

(F) = [Q] (A} (28)

where {F} and {A}) were defined in Eq. (21), and the new

18



transformation matrix [Q] is

105
315
[Ql - - 735
| 4 315
| 105
The constants (A) can be
(a) = [(Q1°1 (F)
where
T 216
1 . -1620
[Q] - 537
3240
L -1890

14

63 0
252 189
91 84

-34

570

-1290

770

-18

144

78

related to nodal forces as

16
-300
1020

-770

(29)

-54
810

-2430

1890 _

The strain-energy release rate equations were again obtained

by performing the integrations as in Eq.

(25) as
) 1 1
1 = "2 5% Fy,
+ F
Y
+ F
Yk
+ F
71
where

(tll(vp-vp,) +

(t21(vp-vp,) +

’(t31(vp-vp,) +

(thl(vp_v ) +

p'

19

t12(vn'vn')

t22(vn°vn')

t32(vn-vn')

€20 Vn)

+

+

130,
€3V

t33(vy,

t63(vm

(11(a)) and using Eq.

'vmn))
-vlll'))

'vm'))

S AN

(30a)




t1y — 11187 + 5 n
24543
t12 - 38556 - —
33777
tiy = - 53055 t =
c - 11396 9575
21 3 8
33003
thy = - 12936 + 8
(30b)
45837
thy = 17988 - —g
N _ _ 8453 + 3595
31 3 4
12411
ty, = 3804 s —g
17289
tyy = - 13587 + —
17685
thl - 6948 - —g
60993
tho = - 23976 + —g "
84807
thy = 33372 - —g
A similar equation was obtained for Gyj where Fy is
replaced with Fy and v is replaced with wu. As before these

formulas are applicable to triangular cubic elements (Fig. 4(4d))
obtained by collapsing one side of the cubic singularity

elements.
Mixed Mode Formulation

The G formulas presented earlier apply for pure mode I and

for pure mode II problems. In mode I (or mode II) problems with

20




parabolic elements, the force Fy (or Fx ), at node k from
k k

element J (see Figs. 3@ and 4a) is exactly equal in magnitude
but of the opposite (or same) sign to the force computed from the
element J’, the symmetric element about the x-axis.- In mixed
mode problems, the deformation is neither symmetric or
antisymmetric about the x-axis (or the crack line). Therefore,
even if the finite element model is symmetric about the crack
line, as shown in Fig. 5, the forces F T ana FyB will not
be equal in magnitude and opposite in s?gn to ea:h other. (See
the appendix for details.) Because the force Fyk for the
regular paraboiic element and F for the regular cubic elément
(see Fig. 3) do not contribute to1 G, the formulas given for
these elements in Eqs. (18) and (22) are also valid for mixed
mode conditions.

However, the G formulas for the singularity element (Egs.
(26) and (30)) need to be modified for mixed mode conditions.
The modification is necessary because, for quarter-point
singularity elements, the nodal forces at node k have products
involving the displacements at nodes 1 and m (see Fig. 4(a)
and Eq. (26)). Similarly, for the cubic singularity elements,
the nodal forces at.node 1 have products inQolving
displacements at nodes m, n, and p (see Eq. (30) and Fig.
4(c)). The required modifications are explained below.

In mixed mode conditions, the upper and lower crack faces do
not deform symmetrically or antisymmetrically with respect to the

crack tip. To close each of the crack faces from a+A to a,

21




different amounts of work are needed. The amount of work needed
to close each crack surface can be found by computing the
relative displacements of nodes on the crack surfaces relative to
the crack tip and using the procedure outlined earlier.

The G formula for the quarter point element, then, is

1
€1 = "3 [Fyi (e V) ¥ T (vy-vy )

T i ; B i -
+ Fyk (Eqqvy + E39Vy! * Fyk RESACYERSRS VASERE

(31)

where tj71, ti2, . . . t3p are defined in Eq. (26b). v and v
are the relative displacements of nodes m and m', respectively,

with reference to the crack tip node 1i: Vo = Vo oYy and
- T

V. o, =V - v, . The forces F and FB are the forces

m m i Yy Yy

computed from the elements J and J', respectively (see Fig.
5).

A similar equation was obtained for Gjyj where Fy is
replaced with Fy and v is replaced with wu. For pure mode I
(or mode II) conditions, F = - F and F - F

4" 4" *k "

(or Fg - FT and FB - - FT ), and Eq. (31) reduces to

k Yk *k *k
Eq. (26).
For mixed mode conditions, the G formula for the cubic

singularity element is

22




1 1
GI- - 3% 3% [Fyi(tll(vp-v , ) + t12(vn v_,) + t13(vm v .,
+ ij(t21(vp-vp,) + pzz(vn-vn,) + t23(vm-v D))
+ Fyk(t31(vp v_,) + t32(vn-v ,) + t33(vm-v )
T N } . (32)
+ Fyl(t4lvp ot vt ot m)
+ FB {(t,.v , + t, v + t,.v )]
¥y 41 p' 42 'n’ 43 'm’
where tj3, tj2, . . ., t43 are defined in Eq. (30b). The
forces FT and F: are the forces in the y-direction computed
1 1
from elements J and J'’, respectively (see Fig. 5).

A similar equation for Gjy 1is obtained where Fy is
replaced with Fy and v 1is replaced with wu. For pure mode I

or mode II cases, Eq. (32) reduces to Eq. (30).

SIMPLIFIED G FORMULAS FOR SINGULARITY ELEMENTS

The G formulas for the non-cingular elements, Egs. {(13),
(14), (18), and (22), are simple. In contrast, the formulas for
the Qingularity elements are awkward, even for pure mode I or
pure mode II conditions. The formulas are even more complicated
for mixed mode conditions. The complexity of these formulas can
be traced to the terms involving the forces at node k for the
QP elements (Eqs. (26) and (31)), and at node 1 for the cubic
singularity elements (Eqs. (30) and (32)). The G formulas can be
simplified considerably if these forces can be approximated.

For the QP element, three constants A1, A, and A3 were
23




assumed in the oy distribution (Eq. (15)) because the three
forces at nodes i, j, and k (Fig.4) were used. However, if
only two constants Aj] and A2 are retained in the oy
distribution, only the forces at nodes i and j are needed to
evaluate these constants. This assumption requires the forces at
node k to be dependent on the forces at nodes i and j, and
will simplify the formulas considerably. Setting the constant

A3 to zero in Eq. (25) yields

F = -F + % F (33)

Substitution of this value of Fy into Eq. (26) or (31) gives
k

1
Cp = -3z [Fy (e Ovpmvp) + £ (vy-vy))

1
- _ (34a)
+ ij(t21(vm vm,) + t:22(v1 vl,)}]
where
t -6 - 2T .t - 6n - 20 341
11 7 %12 n (34b)
1
ta1 = 5 7 by =1

A similar equation was obtained for Gyi where Fy is replaced
with Fyx and v 1is replaced with wu. Note that this equation
is valid for pure mode I, mode 11, and mixed mode conditions.
This equation is considerably simpler and easier to use than
either Eq. (26) or Eq. (31).

A similar procedure can be followed for the cubic
singularity elements. In this case, only three constants are
used in the expression for 0y. Setting constant A4 to zero in
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Eq. (29) yields
11 F 11 F (35
F. = F_ - == + 5=
Y3 Y 27 yy 0 27 vy )
Substitution of this expression for Fy into Eqs. (30) and (32)
1
gives
1
GI - - 2A[Fyi(t11(vp-vp,) + tlz(vm-vm,) + t13(vn-vn,))
+ ij(t21(vp-v L)+ t22(vm-vm,) + t23(vn-vn,))
+ Fyk(t31(vp v_,) + t32(vm-vm,) + t33(vn—vn,))]
(36a)
where
157 405
11 7 T Tt 1o
1377
ti, - 270 - =i
729 1863
13 7 " Tt 1%
N - 484 395
21 27 32 "
176 151
t22 = "3 *t—g " (36b)
& _ 244 209
23 378 "
c - 13 5
31 Y 145 ™
U .
32 3 16
1 1
‘337 ¢ *T6 "
A similar equation was obtained for Gyy where Fy 1is replaced
with Fy and v 1is replaced with u. Again, this equation is
valid for pure mode I, mode II, and mixed mode conditions, and is
considerably simpler and easier to use than either Eq. (30) or
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Eq. (32).

Egs. (26), (30), (31), and (32) will be referred to as the
consistent formulas. Eqs. (34) and (36) will be referred to as
the simpler formulas. The accuracy of the consistent and simpler
formulas will be studied later in this paper by applying the
formulas to two mode I and two mixed mode problems for which

reference solutions are available.

MODIFICATION FOR PRESSURE LOADED CRACK FACES

The procedure developed earlier is valid for calculating
strain-energy release rates for self-similar crack growth when
the crack faces are stress free. When the crack faces are
pressure loaded, the procedure outlined above must be modified.
To illustrate this modification, consider a central crack of
length 2a in an infinite plate.

Figure 6 shows the region very near the crack tip with a
uniform pressure loading of magnitude S applied to crack faces.
As before, the strain-energy release rate is related to the work
required to close the crack from a + & to a. The closure of
the crack faces from a + A to a can be divided into two
parts. In the first part, the applied pressure between a + A
and a is erased and, in the second part, the stress free crack
faces between a + A and a are closed. In the finite element
analysis, the first part is equivalent to addition of nodal
forces consistent to the opposite of the applied pressure at all

nodes between a + A and a. For the second part, the general
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procedure described earlier is used.
For a regular 8-noded element, the uniform Pressure <
acting between a + A and a translates into three consistent

nodal forces of values 2A, E%A, and 2A acting at nodes i,

J, and  k respectively (see Fig. 6). To erase this pressure,
the opposites of these forces are applied to nodes i, j, and k

as shown in Fig. 6(b), and added to the finite element computed

forces F°© . Fc, and F°€ at nodes i, j, and k,
Yy y; Yk
J
respectively, (see Fig. 6(b)). Thus, the forces at nodes i, i,

and k, to be used in Eq. (18), will be

F. = FS . 3a
Yi ¥; 6
F = fFS . 25, 37
Y Y 3
F = FS . Sj
Tk Y 6

Eqs.‘(37) show that the correct forces to be used in the G
calculations for a crack face loading are sum of the computed
finite element forces and the negative of the consistent nodal
forces for the pressure distribution. The consistent nodal
forces for an uniform pressure distribution of magnitude S for
the various elements considered in this paper are shown in Fig.
7. These forces are then added to the forces computed at the

nodes. The corrected forces, Fy , F , etc., are then used in

i Y3
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the appropriate G equations presented earlier to calculate the

strain-energy release rates.

EVALUATION OF G FORMULAS

The formulas presented in this paper are used to calculate

strain-energy release rates for cracks in two mode I and two

mixed mode problems. The results are compared to those from the
literature. The percent error is defined here as
Present result - Reference result
Percent error = * 100

Reference result
Unless otherwise specified, a Poisson’s ratio of 0.3 was used for
all configurations analyzed.

In all the problems studied, the finite element idealization
at the crack tip had triangular elements with straight sides.
These elements were obtained by collapsing one side of the
par#bolic or cubic elements. These triangular elements are
preferred over their rectangular or curved counterparts as

suggested in Refs. 4, 11, 18, and 19.

Mode I Problems
Remote Loading

Center-cracked tension specimen. - The first example is a

center cracked tension (CCT) specimen with a crack-length-to-
width ratio of 0.8 (see Fig. 8(a)). From the symmetries in the

problem, only one-quarter of the specimen was analyzed. Fig.
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8(c) shows the finite element idealization for the 8-noded

parabolic elements and the 1l2-noded cubic elements. The specimen
was analyzed four ways: (1) regular parabolic elements

everywhere, (2) regular parabolic elements with QP elements at
the crack-tip, (3) cubic elements everywhere, and (4) cubic
elements with cubic singularity elements at the crack tip. For
each case, the strain-energy release rates were obtained using
the formulas presented earlier. Table 1 presents the normalized
forces and crack opening displacements (COD), and the strain-
energy release rates. The four G values are within about 3
percent of an accurate value from Ref. 20. The models with the
singularity elements, as expected, yielded the most accurate
results. For these cases, both of the simpler formulas yielded G
values which are more accurate than their cdnsistent
counterparts.

Single edge notched specimen. - The second example was a

single edge notched specimen with a/b = 0.8 (Fig. 8(b)). Again
the finite element idealization of Fig. 8(c) was used. Table 2
presents the normalized forces, COD, and the strain-energy
release rates obtained for all 4 idealizations. The strain-
energy release rates obtained were generally about 6% lower than
an accurate solution given in Ref. 20. Again the models using
the singularity elements yielded more accurate G values than the
models using the non-singular elements. As in the CCT case, the
simpler formulas yielded G values which are more accurate than

their consistent counterparts.
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Crack Face Loading

As pointed earlier, the forces used in the G formulas must
be modified for loaded crack faces (see Eq. (37)). To verify
this modification, a center cracked plate with crack-face
pressure loading was analyzed. Table 3 presents the forces on
the nodes at and ahead of the crack tip obtained from the finite
element analysis for the QP and cubic singularity elements.
This table also presents the forces used in the G calculations.
Because the stress-intensity factors and strain-energy release
rates are identical for crack-face loading and remote loading,
the COD should be identical for these two loadings. Therefore,
the modified forces in column 4 of Table 3 should be identical to
those obtained with the remote loading. A comparison of column 4
of Table 3 and column 2 of Table 1 shows that this is true. This
verifies the modification outlined earlier for the crack face

pressure loading.

Mixed Mode Problems
To evaluate the accuracy of the formulas for mixed mode
problems, an angle crack problem and a cracked interface problem
were analyzed. The calculated strain-energy release rates are

compared to those from the literature.

Angle Crack
Fig. 9(a) shows the configuration used for the angle crack

in a finite plate. Fig. 10(a) and (b) present the finite element
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jdealizations with 8-noded parabolic elements and 12-noded cubic

L
Lviie

elements, respectively. Fig. 10(c) shews the details at
crack tip. With the parabolic elemenés, quarter point
singularity elements with A = 0.04a were used at the crack tip.
In the cubic element model, cubic singularity elements with A =
0.045a were used at the crack tip.

Fig. 11 shows the forces at the crack tip. The forces at
nodes i, j, and "k and the displacements at nodes m and 1

are needed to compute G. These forces and displacements,

represented as components that are normal and tangential to the

crack plane, can be computed as follows. First, the Cartesian
forces Fy and Fy at nodes i, "j, and k are obtained. At
node i (Fig. 10), the forces Fx and F can be computed
i Vi
from elements 1, J, K, and L. The forces F , F , F , and
X y X
j J k
Fy can be computed from element L alone. The tangential and
k
normal forces at the crack tip, Ft and Fn , can be computed
i i
as
F - F cosf + F siné
t, X, Y.
i i i
(38)
F = - F sind + F cosf
n, X, Y.
i i i

with similar equations for the forces at nodes j and k.
Similarly, the normal and tangential displacements at nodes m,
m’, 1, and 1’ 7relative to the crack tip can be computed by
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first calculating the Cartesian relative displacements as

m m i
(39)
v - Vv -V
m m i
A similar set of equations were used for nodes m’, 1, and 1°.

The normal and tangential forces and displacements are then used
to obtain the Gy and Gjy values.

Table 4 presents tﬁe Gy and Gy1 values obtained with
quarter-point and cubic singularity elements. For comparison,
this table also contains the results from Wilson’s collocation
procedure [21] and Tan et al.'’'s boundary force method [22].

In.view of the slight (2 percent) difference between the
collocation and boundary force method results, the present
results are compared with the average of these reference results,
The present results are in good agreement with the reference
results. The accuracy is better for mode 1 than for mode II.
Again the differences between the simpler and consistent formulas

are negligible.

Cracked Bimaterial Plate

The second mixed mode problem analyzed was a bimaterial
plate with a central crack along the interface (Fig. 9(b)).
Erdogan and Gupta [23] analyzed this problem for an infinite
plate with uniform pressure applied to the crack faces. Their

calculated G values will be used to evaluate the present
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results.

Because of symmetry, only one-half of the plate was
idealized, as shown in Fig. 12(a). Fig. 12 shows the finite
element model using 8-noded parabolic and QP singularity
elements. Table 5 presents the strain-energy release rates
obtained using Eqs. (31) and (34) for three sets of material
combinations. The strain-energy release rates given in Ref. 23
were divided by a factor 2 because Erdogan and Gupta’s definition
of G was different from the classical definition (see Eq. (37)
on p. 1097 of Ref. 23). Excellent agreement is obtained between
the finite element computations and those of reference 23,

In this bimaterial case the power of the stress singularity

at the crack tip is of the form -1/2%tix, where o« depends on the
relative properties of the two materials. This indicates that
the stresses oscillate near the crack tip. The solution in Ref.

23 includes the oscillatory part of the stresses. In the present
finite element analysis, however, this oscillatory behavior is

neglected. The accuracy of the present results show that

contribution of the oscillatory part to the strain-energy release

rate is negligible.

CONCLUDING REMARKS
A general procedure is ﬁresented for obtaining the strain-
energy release rate G for cracks using the virtual crack-
closure technique in finite element analyses. The procedure was

applied to non-singular 4-noded, 8-noded (parabolic), and 12-
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noded (cubic) elements and then to quarter-point and cubic
singularity elements. The procedure assumes that the finite
element idealization is symmetric about the crack plane at the
crack tip and symmetric about a line normal to the crack plane at
the crack tip. The procedure uses forces at and ahead of the
crack tip and displacements behind the crack tip. With this
procedure, simple formulas were obtained for the non-singular
elements.

For the singularity elements, two types of formulas -
consistent and simpler - were obtained. The consistent formulas
use three nodal forces for the quarter-point singularity element,
and four nodal forces for the cubic singularity elements. 1In
contrast, the simpler formulas use two and three nodal forces for
the quarter-point and cubic singularity elements, respectively.

A slight modification was necessary to use the formulas when
the crack faces were subjected to pressure loading. The finite
element forces need to be modified to account for the pressure

loading. The modification is simple, accurate and is easy to

implement in the actual analysis.

Two mode I and two mixed mode problems were analyzed using
the non-singular and singular elements mentioned above. The
strain-energy release rates for these problems were obtained
using the formulas derived in this paper. Comparisons with
accurate or reference solutions from the literature showed that,
for the configurations analyzed, the G formulas yielded accurate

results. For all the configuration analyzed, the simpler
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formulas for the singularity elements yielded strain-energy
releace rates which were more accurate than their consistent
counterparts.

With the singularity elements, fewer elements (and, hence,
fewer degrees of freedom) are needéd to obtain accurate
solutions. The simpler strain-energy release rate formulas
developed in this paper for singularity elements considerably
simplified the G formulas without sacrificing accuracy. These
formulas will enhance the utility of these elements in the
analysis of cracked isotropic and bimaterial configurations.

The analysis and procedure presented in this paper should
provide the basis for future development of formulas for strain-

energy release rates for cracked orthotropic and anisotropic

materials.
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4 Appendix
Inequality of Forces at Node Kk
This appendix will show that the forces at node k (see
Fig. S(b)) computed from the elements J and J’ will not be
the same for mixed mode conditionms.

A mixed mode condition can be thought of as the

superposition of mode I and mode II conditions. Fig. 13 shows
the forces at node k computed from elements J and J' for
mode I, mode II, and mixed mode conditions. For the mode I (mode

I1) case, symmetry (antisymmetry) conditions about the y = 0 line

require that the x- and y-forces be symmetric (antisymmetric).
Note that the forces Fi for mode I and F;I for mode II will

not, in general, be equal to zero. (The requirement of a zero x-
force. at node k for mode I and a zero y-force at node k for
mode ITI can still be satisfied because elements to the right of
"elements J and J' contribute to these forces.)

Superposition of the forces at node k from the mode I angd

mode II conditions will yield the forces for the mixed mode case

as shown in Fig. 13. The y-force at node k from element J |is
FI + FII while that from element J  is - FI + FII. Similarly,
y y y y

the x-force at node k from element J is Fi + FiI and that

from element J is F < F ? Thus, the forces at node k
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computed from the top and bottom elements will not be equal.

Similar arguments hold for node 1 in Fig. 5(c).
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Table 1 -
center cracked tension specimen

Comparison of strain-energy release rates for a

subjected to remote uniform

stress
(a/b= 0.8 ; A/a = 0.0625 ; plane strain )
2 2
Sr a(1-Y%)
GReference (20} - 3.298 E
Element Nodal Forces Relative Crack —7——59—-—7 Percent
Used Fy/Sa Opening S” ma(l1-2%) Error
Displacement

Ev/Sa
Non-Singular Elements
8-noded i -0.3218 m 2.179
Parabolic 3.197 -3.0
Element i -0.2969 1 1.487
(Fig. 3(a))
12-noded i -0.2552 p 2.240
Cubic Element j -0.2360 n 1.835 3.239 -1.8
(Fig. 3(¢)) k -0.1203 m 1.269
Singularity Elements
QP Singularity i -0.1068 m 2.276 3.242 -1.7
Element j  -0.4348 1 1.156 (3.269)*  (-0.9)
(Fig. 4(a)) k -0.0941
Cudbic i -0.0806 P 2.292 3.271 -0.8
Singularity j -0.2406 n 1.544 (3.285) (-0.4)
Element k -0.2471 m O0.7767
(Fig 4(c)) 1 -0.0698

*Values in parenthesis were obtained
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Table 2 - Comparison of strain-energy release rates for a
single edge motched specimen subjected to remote uniform
stress S
(a/b = 0.8; A/a = 0,0625; plane strain)

2 2
S » a(l-2)
G {20} = 143.8
Reference E
. EG
Element Nodal Forces Relative Crack % 5 Percent
Used Fy/Sa Opening S"xa(l-»7) Error
Displacement _
Ev/Sa
Non-Singular Element
8-noded i -1.985 m 15.95
Parabolic 128.9 -10.0
Element j -1.414 1 10.19
(Fig. 3)
12-noded i -1.602 p 16.74
Cubic j -1.346 n 13.10 134.6 -6.4
Element k -0.4236 m 8.645
(Fig. 3)
Singularity Elements
QP i -0.7192 m 17.08 134 .8 -6.5
Singularity (137.4)% (-4.5)
Element j -2.432 1 7.804
(Fig. 4)
k -0.2309

Cubic i -0.5052 p 17.37 138.6 -3.7
Singularity j -1.574 n 10.85 (139.0) (-3.3)
Element k -1.163 m 5.191
(Fig. 4) 1 -0.2596

*Values in parenthesis were obtained with simpler formulas
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Table 3 - Nodal forces for a center cracked tension specimen
with uniform crack face loading of magnitude S

(a/b = 0.8; A/a = 0.0625; plane strain)

Fy/Sa
Forces computed in the Forces needed Forces to
finite element analysis to erase the be used in
crack face the formu-
loading 1a*
i -0.1068 0 -0.1068
QP
Element j -0.3931 -0.0417 -0.4348
(Fig. 4)
k -0.0733 -0.0208 -0.0941
Cubic i -0.0785 -0.0021 -0.0806
Singularity
Element j -0.2312 -0.0094 -0.2406
(Fig. 4)
k -0.2096 -0.0375 -0.2471
1 -0.0562 -0.0135 -0.0698

*Forces in this column are identical to those computed with a
remote uniform stress of magnitude S applied on the line
y = h (see Fig. 8).
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Table 4

Element
Used

QP
Singularity
Element

Cubic
Singularity
Element

- Comparison of strain-energy release rates

for an angle crack in a finite plate

(a/b = 0.5; ¢ = 45°; plane strain)

Reference Results

Wilson [21)%
(Collocation)

Tan et al. [22]
(Boundary Force
Method)

EG, EGy .
s2xa(1-2%) s2xa(1-2%)
1.436 0.3378
(1.467)% (0.3399)
1.433 0.3446
(1.444) (0.3354)
1.440 0.325
1.416 0.3295

*Values in parenthesis were obtained with simpler formulas.

*These values were taken from Figs. 60 and 61 of ref. 21
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Table 5 - Comparison of strain-energy release rates for center
crack along the interface in bimaterial plate with
crack face pressure loading S
(a/b = 0.1; plane strain)

Material Mode 1 Mode I1I Total Total Percent
: Ref [23]& Error
1 2
Aluminum Epoxy 10.35 0.7262 11.08 1.42
10.92
(10.43) (0.6296) (11.05)* 1.21
Steel Epoxy 29.56 2.808 32.05 1.23
31.66
(29.77) (2.168) (31.94) 0.88
Steel Aluminum 1.934 -0.0567 1.877 -5.19
1.980
(1.947) (-0.0567) (1.890) -4.56
MATERIAL PROPERTIES
Material E, psi 7)
Epoxy 0.45 * 106 0.35
Aluminum 10 * 10° 0.3
Steel 30 * 106 0.3

*The total G values of reference [23] were scaled down by
factor 2 because Erdogan and Gupta defined G for an isotropic,
homogeneous plate as
K% 2
G = 2 —T (1'2) )

&Values in parenthesis were obtained with simpler formulas.
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(a) Normal stress ( Oy) distribution ahead of the crack

b8 ——a

(b) Four 4-noded elements at the crack tip

Fig. 1: 1Irwin’'s virtual crack-closure method
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(c) Collapsed 4-noded
elements at crack tip

(b) Stress distribution and nodal

forces

Fig. 2: Normal Stress Distribution and Consistent Normal Forces
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1 y (a) Detail near the crack tip

Top group
of elements

\\\\ Bottom group /,/’

of elements

(c) Cubic singqularity

(b) QP element idealization
element idealization

Fig. 5 - Forces at and ahead of the crack tip
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(a) Crack face pressure loading
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(b) Superposition of computed forces and forces needed
to erase the pressure loading

Fig. 6 - Modification of forces for uniform crack face pressure
loading
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Non-singular elements Singularity elements
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Fig. 7 - Consistent nodal forces for uniform pressure loading in
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Fig. 8 - Mode I problems and the finite element idealization
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Fig. 9 - Mixed mode problems

55




-
o1
Zat 2N
1
L+
(a) Model with 8-noded (b) Model with 12-noded
parabolic elements cubfc elements
(77 elements) (66 elements)

(c) Details of modeling near the crack tip

Fig. 10: Finite Element Models for the Angle Crack Problem
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Fig. 11: Computation of Normal and Tangential Forces

57




(a) Finite element model
(140 elements)

(b) Detail of modeling near
the crack tip
A/a = 0.05

Fig. 12: Finite Element Idealization for the Bimaterial Plate
Problem
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